

3 CORE FLEXIBLE ALUMINIUM PVC FLAT CABLES

TECHNICAL DETAILS & DIMENSION				
Size (mm²)	No. of Strands/ Dia in mm (Nom.)	Width (mm)	Height (mm)	Amps
3C x 2.5	13/0.5	13.20	6.00	14
3C x 4	21/0.5	15.40	7.00	18
3C x 6	31/0.5	18.40	8.00	26
3C x 8	42/0.5	20.70	8.90	31
3C x 10	51/0.5	22.20	9.60	36
3C x 12	64/0.5	24.00	10.20	42
3C x 16	84/0.5	27.40	11.60	49
3C x 25	126/0.5	34.10	14.30	65
3C x 35	175/0.5	37.60	15.80	78
3C x 50	266/0.5	44.00	18.20	100
3C x 70	357/0.5	51.20	21.00	120

NOTE

- 1. THE NUMBER OF WIRES AND DIAMETER MENTIONED IN THE TABLE ARE APPROXIMATE AND NOMINAL, HOWEVER THEY SHALL MEET THE REQUIREMENTS OF CONDUCTOR RESISTANCE AS PER STANDARDS. IS 8130
- $2.\ \mathsf{TOLERANCE} : \mathsf{UPTO}\,4.0\,\mathsf{SQ}\,\mathsf{MM}\,+/-\,0.5\,\mathsf{MM}.\,6.0\,\mathsf{SQ}\,\mathsf{MM}\,\&\,10\,\mathsf{SQ}\,\mathsf{MM}\,+/-\,1.0\,\mathsf{MM}\,\mathsf{AND}\,\mathsf{ABOVE}\,10\,\mathsf{SQ}\,\mathsf{MM}\,+/-\,1.2\,\mathsf{MM}\,\mathsf{MND}\,\mathsf{ABOVE}\,\mathsf{MM}\,\mathsf{MND}\,\mathsf{MN}\,\mathsf{MND}\,\mathsf{MN}\,\mathsf{M}$
- 3. THE ABOVE DATA IS INDICATIVE AND MAY BE REVISED WITHOUT PRIOR INFORMATION. JOHNSON CABLES WILL NOT BE LIABLE FOR ANY DAMAGES ARISING OUT OF INCORRECT APPLICATION.

JOHNSON MULTICORE ROUND INDUSTRIAL & CONTROL CABLES

PVC INSULATED AND PVC SHEATHED ROUND FLEXIBLE COPPER CABLES (UP TO 1100 VOLTS)

PRODUCT DESIGN

APPLICABLE STANDARD : IS 694:2010

CONDUCTOR : THE CONDUCTORS ARE DRAW FROM 99.97 % BRIGHT ELECTROLYTIC GRADE COPPER WITH MORE

THAN 100 % CONDUCTIVITY ARE ANNEALED AND BUNCHED TOGETHER (CLASS-2 & 5)

PVC INSULATION : THE BUNCH CONDUCTORS ARE INSULATED WITH SPECIALLY FORMULATED PVC COMPOUND WITH A

HIGH INSULATION RESISTANCE VALUE.

THE INSULATION PROCESS IS CARRIED OUT ON MODERN HIGH SPEED EXTRUSION LINES. WHICH

ENSURES HIGH ACCURACY AND CONSISTENCY IN PERFORMANCE

PVC SHEATH : THE SHEATHING MATERIAL PROVIDED RESISTANCE TO OIL, AND MOISTURE AND SUPERIOR

MECHANICAL STRENGTH WITHOUT LOSING ITS FLEXIBILITY

OPERATING TEMPERATURE RANGE: TEMP -15°C TO MAX. +70°C/+85°C

SHEATH COLOUR : BLACK (AND ALSO OTHER COLOUR REQUEST ON CUSTOMER)

PACKING : 100m, 500m & 1000m. (+/-5%) HIGHER LENGTH AVAILABLE ON REQUEST.

MARKING : THE CABLES ARE PRINTED WITH GENERIC MARKING "JOHNSON CABLES"

APPLICATION : THIS TYPE OF CABLES USED FOR WIRING IN MACHINES, CONTROL PANELS, ELECTRIC POWER

SUPPLY, MODERN ELECTRIC APPLIANCES AND EQUIPMENTS

FEATURE : MANUFACTURED FROM BRIGHT ANNEALED 99.97 % PURE COPPER CONDUCTORS AND HENCE,

OFFER LOW CONDUCTOR RESISTANCE.

OUTER SHEATH CONSISTS OF HIGHLY ABRASION RESISTANT PVC COMPOUND IMPERVIOUS TO

GREASE, OIL AND WATER ETC

EXCELLENT MECHANICAL AND ELECTRICAL PROPERTIES.

PROGRESSIVE SEQUENTIAL LENGTH MARKING ON EVERY METER.

CORE COLOUR : 2 CORE: RED, BLACK

3 CORE: RED, BLACK, GREEN

4 CORE: RED, YELLOW, BLACK, GREEN

5 CORE: RED, YELLOW, BLUE, BLACK, GREEN

ISO CERTIFICATION : ISO 9001: 2015, ISO 45001: 2018, ISO 14001: 2015, CE, RoHS

(\$ 694:2010) (\$ 7098.P.1)

IS 7098 P-1

, TUV RHEINLAND CERTIFICATE No. R 60160536

PRODUCT CERTIFICATION: