# The control panel of BST-Vib Vibration Shaker is shown as follows



- 1. Vibration amplitude output display- Shows the amplitude of the different vibration signal outputs of the Shaker
- 2. Calibration potentiometer
- 3. Function selecting switch- Switches the output of the Shaker to acceleration, velocity or displacement
- 4. Potentiometer for adjusting the output amplitude
- 5. Adjusting the the output vibration amplitude slowly
- 6. The table for fixing the transducer to be calibrated
- 7. The thread hole for fixing the stand of proximity probe- During the calibration of roximity probe, the stand of the transducer is fixed on the control panel through this thread hole.
- 8. Power switch 120 VAC- optional 220 VAC
- 9. Socket for 120 VAC power input optional 220 VAC Used for connecting 120 V AC power.
- 10. Socket for power output- For monitoring the wave shape of the output signal of the power amplifier of the Shaker.
- 11. Output socket for 24 V voltage- Provides power at 24 V for proximitor during the calibration of proximity probe.
- 12. Frequency selecting switch- For selecting the frequency of the output signal



# **BST-Vib Specifications**

# Frequency

10, 20, 40, 80, 160, 320, 640, 1280Hz +0.01%

#### Unit

Acceleration: m/s2 (PEAK) Velocity: mm/s (RMS) Displacement: um (PK-PK)

# **Amplitude Accuracy**

Acceleration (@30m/s2 pk) 40Hz to 320Hz + 0.3dB + 1digit 20Hz to 1280Hz + 0.5dB + 1digit Velocity (@25mm/sec pk) 40Hz to 320Hz + 0.5dB + 1digit Displacement (@10 $\mu$ m pk-pk, 80Hz) 40Hz to 320Hz + 0.5dB + 1digit

#### **Proximity probe linearity**

Prode: 5mm and 8mm probes

Range: 0~4.0mm

## **Display**

3 1 /2-digit display for acceleration, velocity, or displacement

## Physical

Size:280 x 180 x 250(mm) Weight: 20lb

## **Environmental Temperature**

Operation: 0 oC to 50 oC Storage: -20 oC to 70oC

Humidity: 90% non -condensing



# Maximum vibration amplitude and maximum load

Because the vibrostand used in BST-Vib Series Vibration Shaker is rather small, during the calibration of transducers of different weight under different frequencies the output amplitude of the Shakers are also different. Maximum vibration amplitude and maximum load are related to the maximum acceleration. maximum velocity and maximum displacement output generated from the Shaker under a certain frequency and with a certain weight of the transducer to be calibrated. The specific figures can be seen in the following table

| Wt     | <u>&lt;</u> 100g     |         |       | <u>&lt;</u> 250g     |         |       | <u>&lt;</u> 650g     |         |       |
|--------|----------------------|---------|-------|----------------------|---------|-------|----------------------|---------|-------|
| Freq   | a(m/S <sup>2</sup> ) | v(mm/S) | d(µm) | a(m/S <sup>2</sup> ) | v(mm/S) | d(µm) | a(m/S <sup>2</sup> ) | v(mm/S) | d(µm) |
| 10Hz   | 2.5                  | 28      | 1300  | 3.5                  | 40      | 1800  | 4                    | 45      | 2000  |
| 20Hz   | 15                   | 85      | 1900  | 10                   | 60      | 1300  | 5                    | 28      | 640   |
| 40Hz   | 60                   | 170     | 2000  | 35                   | 100     | 1100  | 12                   | 35      | 380   |
| 80Hz   | 100                  | 141     | 800   | 40                   | 60      | 320   | 14                   | 20      | 110   |
| 160Hz  | 75                   | 53      | 150   | 35                   | 25      | 70    | 12                   | 8.5     | 24    |
| 320Hz  | 50                   | 18      | 25    | 30                   | 10      | 15    | 10                   | 3.5     | 5     |
| 640Hz  | 30                   | 5       | 3     | 20                   | 3.5     | 2     | 6                    | 1       | *     |
| 1280Hz | 23                   | 2       | *     | 10                   | 0.9     | *     | 5                    | 0.4     | *     |

