

DATA SHEET

POLYMATECH STANDARD COB Series

Version 2

FL18COB3030 BLUE

Field of Use

Polymatech Blue LED: Precision Lighting for Performance Applications

Polymatech's Blue LED solutions are engineered for high-intensity, stable output across a range of professional applications including white light generation, horticulture, medical devices, displays, and industrial systems. With peak wavelengths ranging from 440–470 nm, Polymatech's blue LEDs are optimized for reliability, optical power, and spectral consistency. In controlled tests, these LEDs have demonstrated superior performance in phosphor excitation, photobiological stimulation, and blue-rich spectrum applications. Here's how Polymatech's Blue LED technology delivers—and what makes it stand out.

Optimized Emission for Peak Performance

Targeted Wavelengths: Blue LED emission is precisely tuned to 450-460 nm, ideal for phosphor excitation in white light applications, and for stimulating chlorophyll b in horticulture.

High Radiant Output: Polymatech Blue LEDs deliver up to 80 mW per emitter in high-power formats, ensuring strong photon flux for both visual and functional applications.

Tight Binning for Color Stability: With advanced wafer-level binning, Polymatech ensures minimal chromatic deviation and uniform spectral consistency across batches.

Tailored for Versatile Use Cases

White Light Generation: As the foundational emitter for phosphor-converted white LEDs, Polymatech's blue LEDs power high-CRI, long-lifetime lighting solutions for residential, commercial, and industrial use.

Horticulture Compatibility: Blue wavelengths between 440–450 nm are key for chlorophyll b absorption and vegetative growth stimulation. When combined with red LEDs, Polymatech blue emitters contribute to higher photosynthetic efficiency.

Medical Devices: Blue light is used in phototherapy (e.g., acne, wound healing), diagnostic fluorescence, and surgical lighting. Polymatech blue LEDs ensure narrowband emission and consistent radiant intensity.

Display Backlighting: With high spectral purity, Polymatech's LEDs serve in high-definition backlighting, ensuring sharp contrast and rich color rendering.

Thermal Management and Longevity

Efficient Heat Dissipation: Polymatech's LED packaging includes ceramic substrates and thermally optimized SMD/COB formats, reducing junction temperature and increasing device lifespan. Extended Lifetime: With L70 lifetimes exceeding 50,000 hours under standard conditions, these LEDs deliver dependable long-term operation in demanding environments.

Low Degradation Over Time: Polymatech's blue LEDs maintain optical and electrical stability over extended usage, with minimal spectral drift or power loss.

Why Polymatech Blue LEDs Lead the Field

Spectral Accuracy: Emission stability around 450-460 nm ensures compatibility with a broad range of photonic applications from lighting to sensing.

Energy Efficiency: High wall-plug efficiency and low thermal losses translate to reduced operating costs and less heat-related failure. **Manufactured in India, Globally Aligned:** Polymatech designs and manufactures Blue LEDs in India with internationally benchmarked QA, ensuring consistent performance and supply chain transparency.

Conclusion

Polymatech's Blue LED range supports diverse industries with precise, high-output light in the 440–470 nm spectrum. Whether for white light engines, horticulture integration, medical systems, or industrial photonic applications, Polymatech's blue emitters offer reliable spectral power, long lifespans, and thermal stability. With optimized designs for SMD, COB, and custom modules, these LEDs are a proven choice for high-performance deployments.

Contents

1.	Introduction	P 6
2.	Performance Characteristics	P 8
3.	Mechanical Dimensions	P 9
4.	Characteristic Curves	P 10
5.	Reliability	P 13
6.	Packing Specification	P 15
7.	Precaution	P 16

Applications

- Phototherapy for Neonatal Jaundice
- Acne Treatment / Skin Therapy
- Dental Curing Lights
- Sleep Disorder Therapy
- Low-Level Light Therapy (LLLT)
- Photosynthetic Growth Regulation
- Blue-Enriched Light for Leafy Greens
- Fluorescence Excitation in Lab Analysis
- UV-Free Disinfection Support
- Machine Vision / Optical Sensors
- Backlighting in Displays

Product Nomenclature

FL18COB3030 BLUE

[1] Product shape : FL18COB3030

[2] Die count in series : 12

[3] Die count in parallel : 01

INTRODUCTION

Product Description

The FL18COB3030 series of high-flux, multi-die arrays in a smaller, easy-to-use platform. With FL18COB3030 LED lighting-class reliability, the FL18COB3030's small, uniform emitting surface enables both directional and non-directional lighting applications including lamp retrofit and luminaire designs. featuring a 17-mm optical source, the FL18COB3030 brings new levels of flux and efficacy to this form factor.

The FL18COB3030 series is designed with flip chip technology which has high heat emission property thus increasing product life and maintaining same CRI output.

Features

Mechanical Dimensions : 30×30×1(mm)

Packaging Structure : Aluminium Base Chip on Board

• Reference Assembly : M4 screw, Connector

• Thermal Resistance : 2C/W

Maximum Drive Current : 450mA

• RoHS Complaint.

• Better die arrangement for optics.

• Wide range of luminous flux and high efficacy.

• Improved lumen density compared with precious version.

• High Thermal conductivity package.

• Large, monolithic chips with uniform emitting area.

- Encapsulated die with low profile protective window for higher lumen output.
- Electricity isolated thermal path.
- Environmentally friendly: RoHS and REACH complaint.

Performance Characteristics

(Tc=25C)

Product code	Wavelength Dominant (nm)		Forward Current	Forward Voltage (V)		
	Min.	Max	(mA)	Min.	Тур.	Max.
FL18COB3030 BLUE	445	450	450	20.7	24	26.9

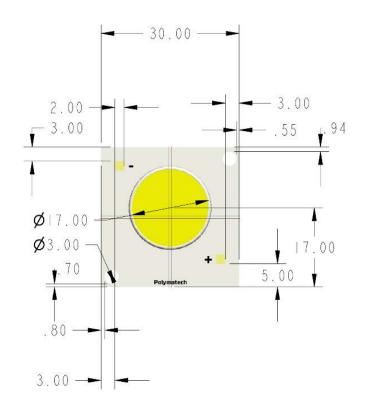
Notes:

- 1. Polymatech Electronics maintains a tolerance of +/- 5nm Wavelength Dominant.
- 2. Polymatech Electronics maintains a tolerance of ±3% on forward voltage measurements.
- *: Values of Luminous flux at Tc=25C are provided as reference only.

Absolute Maximum Ratings

		_
Symbol	Rating	
Pi	6.4	*1
If	450	*1
lr	1	
Тор	-40 ~ +100	
Tst	-40 ~ + 100	-
Tc	105	- *2
Tį	125	*3
	Pi If Ir Top Tst Tc	Pi 6.4 If 450 Ir 1 Top -40 ~ +100 Tst -40 ~ + 100 Tc 105

^{*1.} Input power and forward current are the values when the LED is used within the range of the derating curve in this data sheet.


^{*2.} Refer to 3. Outline drawing for Tc MEASUREMENT POINT.

^{*3.} Junction temperature calculation formula: Tj = Tc + Rj-c × Pi

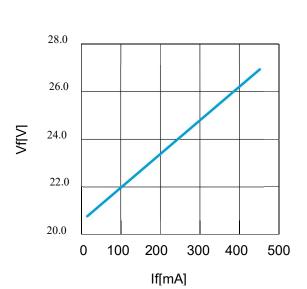
Mechanical Dimensions

The COB dimensions are 30 X 30 mm.

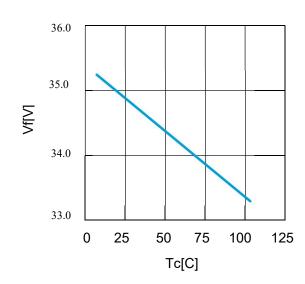
Tolerances Unless otherwise specified: +/-0.3

Dimensions are in mm.
Tolerances unless otherwise
specified: +.13

x° +1


Characteristics Curves

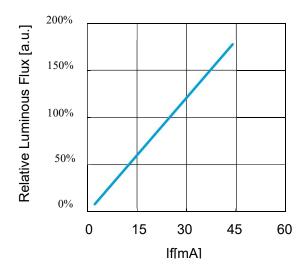
Forward Current Characteristic/Temperature Characteristics

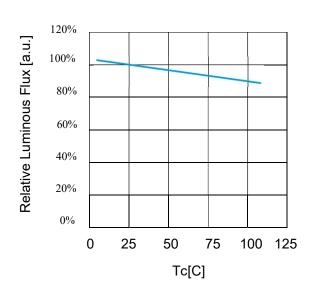

Tc=25C

Forward Current VS. Forward Voltage

Case Temperature vs. Forward Voltage

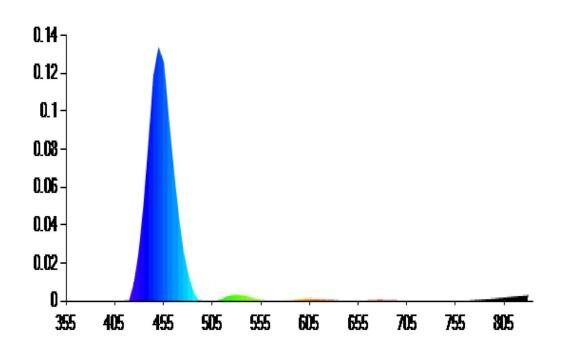
If=90mA

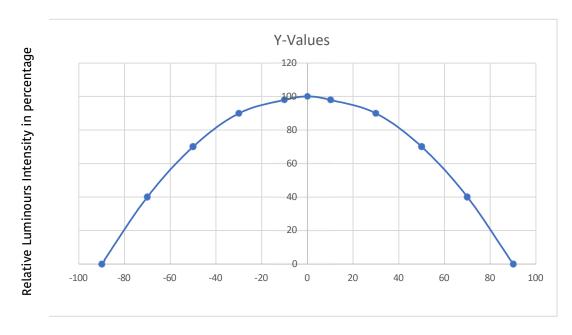



Forward Current VS. Relative Luminous Flux

Case Temperature vs. Relative luminous flux

Tc=25C

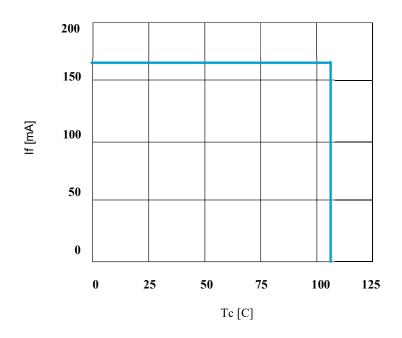

If=90mA



Optical Characteristics

Spectral Power Distribution

Optical characteristics (continued) Radiation Characteristics



Spread Angle in Degrees

Derating Characteristics

Case Temperature

vs. Allowable Forward Current

POLYMATECH ELECTRONICS LIMITED

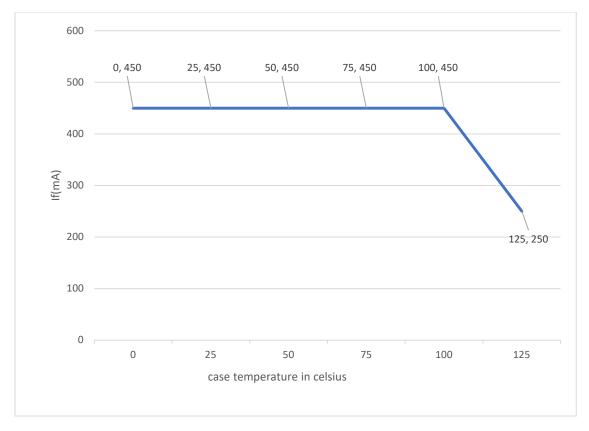
ReliabilityReliability Test

Test Item	Test Condition		
Continuous Operation Test	If=90mA, Ta=25C (with A1-fin) × 1000 hours		
Continuous Operation Test	If=90mA, Tj=120C (with A1-fin) × 1000 hours		
Low Temperature Storage Test	-40 C× 1000 hours		
High Temperature Storage Test	100 C× 1000 hours		
Moisture-proof Test	85C, 85%RH for 500 hours		
Thermal Shock Test	-40 C × 30 minutes - 100 C × 30 minutes, 100 cycle		

Failure Criteria

(Tc=25C)

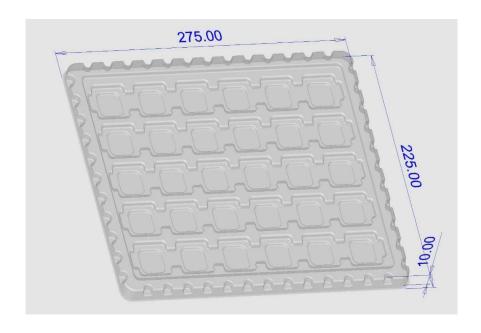
Measuring Item	Symbol	Measuring Condition	Failure Criteria
Forward Voltage	Vf	If=90mA	>U× 1.1
Total Luminous Flux	ФV	If=90mA	<s× 0.85<="" td=""></s×>

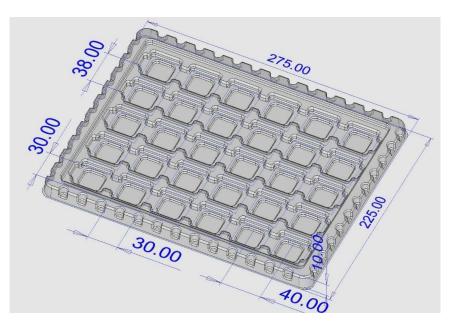

U defines the upper limit of the specified characteristics. S defines the initial value.

Note: Measurement shall be taken between 2 hours and 24 hours, and the test pieces should be return to the normal ambient conditions after the completion of each test.

Operating limits

The maximum current rating of the FL18COB3030 depends on the case temperature (Tc) when the LED has reached thermal equilibrium under steady- state operation. The graphs shown below assume that the system design employs good thermal management (thermal interface material and heat sink) and may vary when poor thermal management is employed. Polymatech Electronics LED recommends a maximum Junction temperature of 135 °C to ensure optimal LED lifetime.


PERFORMANCE



Packaging Specification

Packing

The package each tray contains 30 pieces of COBs and each box contains 12 trays of COBs (Vacuum Sealed).

Precaution

Handling with care for this product

- -Both the light emitting area and white rim around the light emitting area is composed of resin materials.
- Please avoid the resin area from being pressed, stressed, rubbed, come into contact with sharp metal nail (e.g. edge of reflector part) because the function, performance and reliability of this product are negatively impacted.
- -Please be aware that this product should not come into contact with any other parts while incorporating in your lighting apparatus or your other products.
- -Please be aware that careful handling is required after the attachment of lead wires to prevent the application of any load to the connections.
- -For more information, please refer to application note "Instruction Manual (COB LED Package)".

Countermeasure against static electricity

- -Handling of this product needs countermeasures against static electricity because this is a semiconductor product.
- -Please take adequate measures to prevent any static electricity being produced such as the wearing of a wristband or anti-static gloves when handling this product.
- -Every manufacturing facility in regard to the product (plant, equipment, machine, carrier machine and conveyance unit) should be connected to ground and please avoid the product to be electric-charged.
- -ESD sensitivity of this product is over 1000V (HBM, based on JEITA ED-4701/304). After assembling the LEDs into your final product(s), it is recommended to check whether the assembled LEDs are damaged by static electricity (electrical leak phenomenon) or not.
- -It is easy to find static damaged LED dies by a light-on test with the minimum current value.

Caution of product assembly

- -Regarding this product assembling on the heat sink, it is recommended to use M4 screw. It might be good for screw tightening on the heat sink to do temporary tightening and final tightening. In addition, please don't press with excess stress on the product.
- -The condition of the product assembling on the heat sink and the control of screw tightening torque needs to be optimized according to the specification of the heat sink.
- -Roughness, unevenness and burr of surface negatively impact thermal bonding between the product and heat sink and increase heat thermal resistance between them. Confidence of thermally and mechanical coupling between the product and heat sink are confirmed by checking the mounting surface and measuring the case temperature of the product.
- -In order to reduce the thermal resistance at assembly, it might be good to use TIM (Thermal Interface Material) on whole contact surface of the product. In case of using thermal grease for the TIM, it might be good to apply uniformly on the contact surface of the product.
- -In case of using thermal sheet for the TIM, it might be good to make sure that the product is NOT strained by stress when the screws are tightened for assembly.
- -For more information, please refer to application note "Instruction Manual (COB LED Package)".

Thermal Design

- -The thermal design to draw heat away from the LED junction is most critical parameter for an LED illumination system. High operating temperatures at the LED junction adversely affect the performance of LED's light output and lifetime. Therefore, the LED junction temperature should not exceed the absolute maximum rating in LED illumination system.
- -The LED junction temperature while operation of LED illumination system depends upon thermal resistance of internal LED package (Rj-c), outer thermal resistances of LED package, power loss and ambient temperature. Please take both of the thermal design specifications and ambient temperature conditions into consideration for the setting of driving conditions.
- -For more information, please refer to application note "Thermal Management", "Instruction Manual (COB LED Package)".

Driving Current

- -A constant current is recommended as an applying driving current to this product. In the case of constant voltage driving, please connect current-limiting resistor to each product in series and control the driving current to keep under the absolute maximum rating forward current value.
- -Electrical transient might apply excess voltage, excess current and reverse voltage to the product(s). They also affect negative impact on the product(s) therefore please make sure that no excess voltage, no excess current and no reverse voltage are applied to the product(s) when the LED driver is turn-on and/or turn-off.
- -For more information, please refer to application note "Driving", "Instruction Manual (COB LED Package)".

Lighting at a minimum current value

- -A minimum current value of lighting of all dice is 5 mA.
- -When a minimum current is applied, LED dice may look different in their brightness due to the individual difference of the LED element, and it is not a failed product.

Electrical Safety

- -This product is designed and produced according to IEC 62031:2008 IEC 62031:2008 LED modules for general lighting. Safety specification)
- -Dielectric voltage withstand test has been conducted on this product to see any failure after applying voltage between active pads and aluminum section of the product, and to pass at least 500V.
- -Considering conformity assessment for IEC62031:2008, almost all items of the specification depend upon your final product of LED illumination system. Therefore, please confirm with your final product for electrical safety of your product. As well, the products comply with the criteria of IEC62031:2008 as single LED package.

Recommended soldering Condition (This product is not adaptable to reflow process.)

-For manual soldering Please use lead-free soldering. Soldering shall be implemented using a soldering bit at a temperature lower than 350C, and shall be finished within 3.5 seconds for one land. No external force shall be applied to resin part while soldering is implemented. Next process of soldering should be carried out after the product has return to ambient temperature. Contacts number of soldering bit should be within twice for each terminal.

- * Polymatech Electronics cannot guarantee if usage exceeds these recommended conditions. Please use it after sufficient verification is carried out on your own risk if absolutely necessary.
- For more information, please refer to application note "Instruction Manual (COB LED Package)".

Eye Safety

-The International Electrical Commission (IEC) published in 2006 IEC 62471 "2006 Photobiological safety of lamps and lamp systems" which includes LEDs within its scope. When sorting single LEDs according to IEC 62471, almost all white LEDs can be classified as belonging to either Exempt Group (no hazard) or Risk Group 1 (low risk). However, Optical characteristics of LEDs such as radiant flux, spectrum and light distribution are factors that affect the risk group determination of the LED, and especially a high-power LED, that emits light containing blue wavelengths, might have properties equivalent to those of Risk Group 2 (moderate risk).

-Great care should be taken when directly viewing an LED that is driven at high current, has multiple uses as a module or when focusing the light with optical instruments, as these actions might greatly increase the hazard to your eyes. It is recommended to regard the evaluation of stand-alone LED packages as a reference and to evaluate your final product.

This product is not designed for usage under the following conditions.

If the product might be used under the following conditions, you shall evaluate its effect and appropriate them. In places where the product might:

- -directly and indirectly get wet due to rain and/or at place with the fear.
- -be damage by seawater and/or at place with the fear
- -be exposed to corrosive gas (such as Cl2, H2S, NH3, SOx, NOx and so on) and/or at place with the fear.
- -be exposed to dust, fluid or oil and/or at place with the fear.

The LEDs may not be able to maintain their specified performance if they used in a high temperature and high humidity environment.

Precaution with regard to product use

This document is provided for reference purposes only so that POLYMATECH **ELECTRONICS** products are used as intended POLYMATECH ELECTRONICS neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of POLYMATECH ELECTRONICS or any third party with respect to the information in this document. Before purchasing or using any POLYMATECH ELECTRONICS products listed in this document, please confirm the latest information product with POLYMATECH **ELECTRONICS** office, and formal specifications must be exchanged and signed by both parties prior to mass production.

All information included in this document such as product data, diagrams, charts, is current as of the date this document is issued.

Such information, however, is subject

to change without any prior notice.

POLYMATECH ELECTRONICS has used reasonable care in compiling the information included in this document, but POLYMATECH ELECTRONICS assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

Absent a written signed agreement, except as provided in the relevant

terms and conditions of sale for product, and to the maximum extent allowable by law, POLYMATECH ELECTRONICS assumes no liability whatsoever, including without limitation, indirect, consequential, special, or incidental damages or loss, including without limitation, loss of profits, loss of opportunities, business interruption and loss of data, and disclaims any and all express or implied warranties and conditions related to sale, use of product, or information, including warranties conditions merchantability, fitness for a particular purpose, accuracy information, or no infringement.

Though POLYMATECH ELECTRONICS works continually improve products' quality and reliability, products can malfunction or fail. are responsible Customers complying with safety standards and for providing adequate designs and safeguards to minimize risk and avoid situations in which a malfunction or failure of a product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. In addition, customers are also responsible for determining the appropriateness of use of information contained in this document such as application cases not only with evaluating by their own but also by the entire system. POLYMATECH ELECTRONICS assumes no liability for customers' product design or applications.

The LEDs described in this brochure are intended to be used for ordinary electronic equipment (such as office equipment, communications equipment, measurement instruments and household POLYMATECH appliances). Consult Electronics' sales staff in advance for information on the applications in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as for aerospace, airplane, submersible repeaters, nuclear reactor control system, automobiles, traffic control equipment, life support system and safety devices). This LED does not comply with ISO/TS 16949 (IATF16949) and is not intended for automotive applications.

The customer shall not reserve engineer by disassembling or analysis of the LEDs without having prior written consent from POLYMATECH Electronics. When defective LEDs are found, the customer shall inform POLYMATECH Electronics before disassembling or analysis.

When exporting our products, please ensure conformance with applicable laws and regulations and take appropriate actions such as obtaining an export license. Please do not use or supply our products for any weapons of mass destruction (WMD) or for any other military purposes. If we do not receive standing orders, we may recommend another product. If this product is to be used for a different model or for a succeeding model continuously, please contact our sales staff.

Please contact POLYMATECH ELECTRONICS sales office if you have any questions regarding the information contained in this document, or if you have any other inquiries.